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Abstract 
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall 

intensity-duration thresholds and information related to land surface susceptibility. However, no 
system exists at either a national or a global scale to monitor or detect rainfall conditions that may 
trigger landslides due to the lack of sufficient ground-based observing network in many parts of the 
world. Recent advances in satellite remote sensing technology and increasing availability of 
high-resolution geospatial products around the globe have provided an unprecedented opportunity for 
such a study. In this paper, a framework for developing a preliminary real-time prediction system to 
identify where rainfall-triggered landslides will occur is proposed by combining two necessary 
components: surface landslide susceptibility and a real-time space-based rainfall analysis system 
(http://trmm.gsfc.nasa.gov). First, a global landslide susceptibility map is derived from a combination 
of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, 
land cover classification, etc.) using a GIS weighted linear combination approach. Second, an adjusted 
empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess 
landslide hazards at areas with high susceptibility. A major outcome of this work is the availability for 
the first time of a global assessment of landslide hazards, which is only possible because of the 
utilization of global satellite remote sensing products. This preliminary system can be updated 
continuously using the new satellite remote sensing products. This proposed system, if pursued through 
wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide 
hazard analyses into a global decision-making support system for landslide disaster preparedness and 
mitigation activities across the world. 
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1 Introduction 
Landslides are one of the most widespread natural hazards on Earth. In the U.S. alone landslides occur in 

every state, causing an estimated $2 billion in damage and 25–50 deaths each year (USGS, 2006). Annual 
average loss of life from landslide hazards in Japan is 170 (Sidle and Ochiai, 2006). The situation is much 
worse in developing countries and remote mountainous regions due to lack of financial resources and 
inadequate disaster management ability. Recently, a landslide, triggered by "La Nina" rains, buried an 
entire village on the Philippines Island of Leyte on Feb 17, 2006, with at least 1,800 reported deaths and 
only 3 houses left standing of the original 300. A precipitation analysis using multiple satellites (Huffman 
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et al., 2007), including National Aeronautics and Space Administration (NASA)’s Tropical Rainfall 
Measuring Mission (TRMM), reported that 500 millimeters of heavy rainfall fell on that area in a 10-day 
period (Lagmay et al., 2006). The need to develop more effective spatial coverage of landslide 
susceptibility and real-time hazard monitoring for vulnerable countries and remote areas remains apparent 
and urgent (Sidle and Ochiai, 2006). 
Landslides triggered by rainfall can possibly be predicted by modelling the relationship between rainfall 

intensity-duration and landslide occurrence (Keefer and Wilson, 1987). Currently no system exists at a 
global scale to identify rainfall conditions that may trigger landslides, largely due to lack of field-based 
observing networks in many parts of the world. In particular, developing countries usually lack expensive 
ground-based monitoring networks. Thus, for many countries around the world, remote sensing 
information may be the only possible source of rainfall data and land surface characteristics available for 
such study. Recent advances in satellite-based precipitation observation technology and increasing 
availability of high-resolution geospatial products at global scale are providing an unprecedented 
opportunity to develop a real-time prediction system for a global view of rainfall-triggered landslides.  

In this paper, a framework is proposed to develop a real-time prediction system for rainfall-triggered 
landslides around the globe. Drawing on the heritage of a space-based global precipitation observation 
system and remotely sensed surface characteristics products, this study first derives a global susceptibility 
map from the geospatial datasets and then links this analysis to the dynamic trigger, real-time rainfall 
observations, to assess landslide hazards. The goal of this new system is to acquire a global view, rather 
than a site-specific view, of rainfall-triggered landslide disasters in a real-time fashion. 
 
2 A framework for predicting rainfall-triggered landslides at near real-time manner 
In this study, we are primarily concerned with shallow landslides that involve poorly consolidated soils or 

colluviums on steep hill slopes. Shallow landslides, sometimes referred to as debris flows, mudslides, 
mudflows, or debris avalanches, are rapidly moving flows of mixes of rocks and mud, which have the 
potential to kill people and destroy homes, roads, bridges, and other property. This study addresses those 
landslides caused primarily by prolonged, heavy rainfall on saturated hill slopes characterized by high 
permeability. Rainfall-triggered landslides may mobilize into fast-moving mudflows, which generally 
present a greater hazard to human life than slow-moving, deep-seated slides. Although most parts of the 
world have experienced major socioeconomic losses related to landslide activity (Sidle and Ochiai, 2006), 
currently no system exists at either a regional or a global scale to identify rainfall conditions that may 
trigger landslides. 
Useful assessment of landslide hazards requires, at the minimum, an understanding of both ‘where’ and 

‘when’ that landslides may occur. As Fig. 1 shows, landslides result from a combination of factors, which 
according to (Dai and Lee, 2002) can be broadly classified into two categories: (1) preparatory variables 
that make the land surface susceptible to failure without triggering it, such as slope, soil properties, 
elevation, aspect, land cover, and lithology; and (2) the triggering events that induce mass movement, such 
as heavy rainfall and glacier outburst. For rainfall-triggered landslides, at least two conditions must be met: 
the areas must be susceptible to failure under certain saturated conditions, and the rainfall intensity and 
duration must be sufficient to saturate the ground to a sufficient depth. Therefore, to diagnose the landslide 
occurrence, the proposed system must link two major components: landslide susceptibility (LS) 
information and real-time precipitation analysis, as shown in Fig. 1. The LS map empirically shows part of 
the “where” and the rain intensity-duration primarily determines the “when” information. In use, the 
“where” LS map is overlaid with real-time satellite-based rainfall “when” layer to detect landslide hazards 
as a function of time and location. 
In this framework, the first-order control on the spatial distribution (the “where”) of landslides is the 

topographic slope of the ground surface, elevation, soil types, soil texture, vegetation, and the land cover 
classification, while the first-order control on the temporal distribution (the “when”) of shallow landslides 
is the space-time variation of rainfall, which changes the pore-pressure response in the soil or colluviums to 
infiltrating water (Iverson, 2000). 
 
Component 1: the dynamic trigger — space-borne real-time rainfall estimation 
The spatial distribution, duration, and intensity of precipitation play an important role in triggering 

landslides. A long history of development in the estimation of precipitation from space has culminated in 
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sophisticated satellite instruments and techniques to combine information from multiple satellites to 
produce long-term products useful for climate monitoring (Adler et al., 2003). A fine time resolution 
analysis, such as the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 
(TMPA) (Huffman et al., 2006), is the key data set for the proposed landslide monitoring system in this 
study. The TMPA global rainfall map is produced by using TRMM to calibrate, or adjust, the estimates 
from other satellite sensors, and then combining all the estimates into the TMPA final analysis. The 
coverage of the TMPA depends on input from different sets of sensors. First, precipitation-related passive 
microwave data are collected by a variety of low-Earth-orbit satellites, including the TRMM Microwave 
Imager (TMI) on TRMM, Special Sensor Microwave/Imager on Defense Meteorological Satellite Program 
(DMSP) satellites, Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) 
on Aqua, and the Advanced Microwave Sounding Unit B (AMSU-B) on the National Oceanic and 
Atmospheric Administration (NOAA) satellite series. The second major data source for the TMPA is the 
window-channel (–10.7 micron) infrared (IR) data that are being collected by the international constellation 
of geosynchronous-Earth-orbit satellites, which provide excellent time-space coverage (half-hourly 
4x4-km equivalent lat./long. grids) after merged by the Climate Prediction Center of the National Weather 
Service/NOAA (Janowiak et al., 2001). The IR brightness temperatures are corrected for zenith-angle 
viewing effects and inter-satellite calibration differences. 
The TMPA is a TRMM standard product at fine time and space scales and covers the latitude band 50°N-S 

for the period 1998 to the delayed present. A real-time version of the TMPA merged product was 
introduced in February 2002 and is available on the NASA TRMM web site (http://trmm.gsfc.nasa.gov). 
Early validation results indicate reasonable performance at monthly scales, while at finer scales the TMPA 
is successful at approximately reproducing the surface-observation-based histogram of instantaneous 
precipitation over land, as well as reasonably detecting large daily events (Huffman et al., 2007). It is 
anticipated that this type of product will be continued as part of the Global Precipitation Measurement 
(GPM) mission (http://gpm.gsfc.nasa.gov). GPM is envisioned as improving the quality and frequency of 
observations from the constellation of operational and dedicated research satellites in order to provide 
improved global precipitation monitoring for hydrology and water resources management. Figure 2a shows 
a recent example of an instantaneous TMPA rain rate map downloaded from its web site. Figure 2b shows 
climatological percentage of daily rainfall exceeding 2 inches per day over land from 8 years of TMPA 
rainfall data (1998–2005). The availability of this type of rainfall information quasi-globally provides an 
opportunity to derive empirical rainfall intensity-duration thresholds related to landslides and to examine 
antecedent precipitation accumulation continuously in time and space. 
 
Component 2: Global landslide susceptibility map 
Previous research (Soeters and van Western, 1996) has grouped methods for landslide susceptibility and 

hazard assessment into inventory, heuristic, statistical and deterministic approaches. Fabbri et al. (2003) 
and Coe et al. (2004) indicated that topography was the dominant control in determining location of 
landslide occurrence. The effect of slope on landslides was documented by Dai and Lee (2002) and Lee and 
Min (2001). They reported slope steepness has the most influence on shallow landslide likelihood, followed 
by soil texture and soil types that mantle the slope. Vegetation on the slope is critical because bare slopes 
are especially vulnerable to erosion and mass wasting, but slopes with lush, healthy vegetation are far more 
resistant (Larsen and Sanchez, 1998). In addition, land cover can be classified into five classes: (a) forested 
land; (b) shrub land; (c) grass land; (d) pasture and cropland; (e) developed land and road corridors (Larsen 
and Sanchez, 1998), which describe a continuum of increasing susceptibility (e.g., from zero to one) to 
landslides. 
Since it is not feasible to collect past landslide inventory data at the global scale, an approach that 

considers a numerical rating scheme for the factors contributing to landslide occurrence and a weighted 
linear combination method is applied to derive a final global landslide susceptibility map. This approach 
considers the integration of remote sensing and GIS techniques, given that most current models of the 
hazard prediction and landslide zoning are GIS-based or with the support of GIS (Metternicht et al., 2005). 
First, a central database collects several geospatial datasets at global scale. Second, important terrain factors 
contributing to landslide occurrence are derived and re-scaled to the highest NASA SRTM DEM spatial 
resolution (30m). These contributing factors include slope, soil types, soil texture, elevation, land use 
classification, and drainage density. Third, corresponding thematic data layers are generated and stored in  
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GIS; and finally the global susceptibility map is computed by performing a weighted linear combination 
function. The best model obtained was the one with weight determination (0.3, 0.2, 0.2, 0.1, 0.1, and 0.1) 
for the six parameters (slope, type of soil, soil texture, elevation, MODIS land cover type, and drainage 
density), respectively. The consequent range in susceptibility values is normalized from zero to one. The 
larger the susceptibility value, numerically, the greater the potential to produce landslide. The consequent 
range in susceptibility values is normalized from zero to 100. The larger the susceptibility value, the greater 
the landslide potential at that location. The landslide susceptibility values are then classified into several 
landslide susceptibility categories (Sarkar and Kanungo, 2004). A judicious way for such classification is to 
search for abrupt changes in values (Davis, 1986). The category boundaries are drawn at significant 
changes in the histogram of the landslide susceptibility values. As a result, the global landslide 
susceptibility map is finally classified into several categories, ranging from negligible to hotspot (Fig. 3). 
The very high and high susceptibility categories account for 2.8% and 18.6% of land areas. Figure 3 
demonstrates the hot spots of the high landslide potential regions: the Pacific Rim, the Alps, the Himalayas 
and South Asia, Rocky Mountains, Appalachian Mountains, and parts of the Middle East and Africa. India, 
China, Nepal, Japan, the USA, and Peru are shown to be landslide-prone countries. These results are 
compatible to those reported by Sidle and Ochiai (2006). For more detailed description of global landslide 
susceptibility map, please refer to Hong et al. (2007). 
 
3 A preliminary prediction system for rainfall-triggered landslides 
 
3.1 Linking real-time rainfall triggers with landslide susceptibility information 
There is a direct relationship between rainfall levels and the occurrence of landslides (Finlay et al., 1997), 

which, in return, depends on the properties of the soil surface (Irigray et al., 2000). This study links the 
global LS map with the frequently updated satellite-based precipitation information to identify when areas 
with high landslide potential are receiving heavy rainfall. 
 
3.2 Preliminary results  
Landslide hazard assessment based on relationships with rainfall intensity-duration has been applied at 

both global (Caine, 1980) and regional scales (Canuti et al., 1985; Larsen and Simon, 1993; Godt, 2004). 
Empirical rainfall intensity-duration thresholds have been developed for Seattle (Godt, 2004), Puerto Rico 
(Larsen and Simon, 1993), and worldwide (Caine, 1980). Hong et al. (2006) developed a satellite-based 
rainfall intensity-duration threshold as shown in Fig. 4. Note the squares indicate the rainfall 
intensity-duration plots of landslide events that occurred within the TRMM observation period. The lower 
bound of rainfall intensity-duration threshold was approximately identified (Intensity = 12.45 Duration-0.42). 
When coupled with real-time rainfall data, such rainfall intensity-duration thresholds might provide the 
basis for early warning systems for shallow landslides (Liritano et al., 1998). A preliminary prediction 
system for real-time landslide hazard assessment based on the adjusted rainfall intensity-duration threshold 
has been developed from these concepts and a trial version of this operational system is displayed on the 
NASA TRMM website (http://trmm.gsfc.nasa.gov/publications_dir/potential_landslide.html). The 
locations receiving rainfall exceeding the intensity-duration thresholds are marked as a landslide hazard 
zone if the underlying susceptibility category is “high” or “very high” at that location. The locations and 
timing of predicted landslides can then be checked against first-hand accounts from the field or validated by 
later news reports. This preliminary global prediction system for rainfall-triggered landslides is initially 
evaluated by comparing with reported landslide occurrences within the 8-year TRMM operational time 
period. For example, one landslide case was predicted by this preliminary system on 13 Apr 2006, in 
Colombia. The rainfall accumulation for the previous 24 hours was 103mm over central Colombia and the 
landslide susceptibility map indicates susceptibility category high at this area, so the landslide hazard is 
color-coded as red on the web-based graphical interface. Later news reports indicated that at least 34 people 
were missing and four villages were destroyed in a landslide near the Pacific port city of Buenaventura in 
southwestern Colombia. Table 1 lists 25 landslide occurrences collected from worldwide news reports, the 
TRMM website, and other sources. The calculated probability of detection (POD) is 0.76, 19 successful 
detections out of total 25 occurrences (Table 1). Among the 6 failures, 3 cases are caused by short-term 
heavy rainfall, 2 cases are by heavy rainfall on snow or snow melting, and one case is due to monsoon 
rainfall in India. This also demonstrates that the current algorithm does not work well for landslides 
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triggered by very intense rainfall in a relatively short time period (i.e., less than 12 hours) or by processes 
involving rapid snow melting. Despite variations among the cases, the production of shallow landslides 
obviously requires intense rainfall, sustained for at least a brief period of time, in areas with susceptibility 
category of “high” or above. 
 

 
Fig. 1  The conceptual framework of real-time identifying/warning system for rainfall-triggered landslides 

at global scale. Note that dash-line boxes are important components but not covered in this study 
 

 
 

Fig. 2  NASA TRMM-based multi-satellite precipitation products: (a) real-time precipitation observations 
and (b) climatologic percentage of daily rainfall exceeding 2 inches 
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Fig. 3  Global landslide susceptibility map derived from surface multi-geospatial data 

 

 
Fig. 4  Empirical rainfall intensity-duration threshold triggering landslides (Intensity = 12.45 

Duration-0.42) for landslides (squares) that occurred in the TRMM operation period 
(1998-2006). Note that dash line is Caine 1980 

 
4 Summary and discussion 
The primary criteria that influence shallow landslides are precipitation intensity, slope, soil type, elevation, 

vegetation, and land cover type. Drawing on recent advances in remote sensing technology and the 
abundance of global geospatial products, this paper proposed a conceptual framework for a real-time 
prediction system (Fig. 1) for rainfall-triggered landslides across the globe. This system combines the 
NASA TMPA precipitation information (Fig. 2; http://trmm.gsfc.nasa.gov) and land surface characteristics 
to assess landslides. First, a prototype of a global landslide susceptibility map (Fig. 3) is produced using 
high-spatial scale DEM, slope, soil type information downscaled from the Digital Soil Map of the World 
(sand, loam, silt, clay, etc.), soil texture, and MODIS land cover classification. Second, this map is overlaid 
with satellite-based observations of rainfall intensity-duration (Fig. 4), to identify the location and time of 
landslide hazards when areas with significant landslide susceptibility are receiving heavy rainfall. This 
preliminary landslide detection system shows promising effectiveness by comparing to recent landslide 
events that occurred during the TRMM operational period (Table 1). A major outcome of this work is the 
availability of a global prospective on rainfall-triggered landslide disasters, only possible because of the 
utilization of global satellite products. This type of real-time prediction system for disasters could provide 
policy planners with overview information to assess the spatial distribution of potential landslides. 
However, ultimate decisions regarding site-specific landslide susceptibility will continue to be made only 
after a site inspection. 
A global evaluation of this system is underway through comparison with various field databases, web sites 

and news reports of landslide disasters. The need for retrospective validation and improvement of this 
preliminary system requires continued collection of global landslide data. The prototype of this system can 
be enhanced by providing improved satellite remote sensing products and by updating the geospatial 
database as more relevant information becomes available. Specifically, the land cover data should be 
routinely updated because they are subject to change by human activity. Several future activities are under 
consideration: 
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Table 1  Evaluation of the preliminary system by retrospectively comparing with reported worldwide landslides  

within last 8-year TRMM operational period (Note: mm = millimeters.) 
 

Time 
Country  

(State/Province) 
Identified
(Yes/No) Causes/types Major losses and damage 

Aug. 22, 2006 Ban Thahan Village in  
Phang Nga, Thailand 

No Heavy rainfall/flash flood Blocking the roads 

Aug. 20, 2006 Holiday village of Gulval  
in Cornwall, UK 

Yes Heavy shower, Unknown 

Aug. 20, 2006 Surat Thani, Thailand Yes Heavy rainfall and flash 
flood 

600 residents evacuated 

Aug. 19, 2006 Song Bang town of  
northern mountainous Cao 
 Bang province, Vietnam 

Yes Caused by prolonged heavy 
Rains 

10 killed 

Jul. 31, 2006 Roer Gulch east of  
Telluride, CO, USA 

No Heavy rainfall/flash flood Unknown 

Jul. 9 South Korea Yes Typhoon Ewiniar, >300mm Widespread mudslide 
Jun. 28, 2006 Albany, upstate of NY Yes Heavy rainfall, 400mm/5  

Days 
2 killed 

Jun. 25, 2006 Villages of Chamba  
District, Shimla, India 

No Strom, flash flood Six houses swept away 

Jun. 20, 2006 Sinjai in South Island of 
Sulawesi, Indonesian 

Yes Heavy rainfall >250mm >200 deaths 

May 17, 2006 The Schweitzer  
Mountain Ski resort,  
Sandpoint, Idaho 

No Rain on snow and 
snowmelt, rocks, mudslide, 
and debris flows 

Condo buildings damaged 

Apr. 13, 2006 Buenaventura, Colombia Yes Rainstorm, 103.04mm/day >34 death 
Jan. 04, 2006 Jakarta, Indonesia Yes Monsoon rains,  

250mm/3day 
>200 buried 

Oct. 8, 2005 Solola, Guatemala Yes Hurricane Stan,  
300mm/3day 

>1,800 death 

Sep. 5, 2005 Yuexi County, Anhui,  
China 

Yes Rain storm, 450mm/6day 210,000 people affected;  
10,000 houses flattened 

Aug. 5, 2005 Guwahati, India No Monsoon Rain,  
310mm/3day 

5 killed 

Jan. 10, 2005 La Conchita, CA Yes Heavy rain season,  
390mm/14day 

12 death 

Oct., 2004 Miyagawa area, Mie  
prefecture, Japan 

Yes Heavy and intense rainfall; 
Numerous landslides and  
debris flow 

17 deaths, 9 injuries; 87 
homes damaged/; extensive 
forest  damage 

Jul. 20, 2003 Minamata and Hishikari, 
southern Kyushu, Japan 

Yes Heavy and intense rainfall; 
Debris avalanches and 
debris flows 

25 deaths; 7 homes destroyed; 
roads, power and hot spring  
lines damaged 

May 2003 Ratnapura and  
Hambantota Districts,  
Sri Lanka 

Yes Continual heavy rains; 
Many landslides and debris 
flows 

>260 deaths; > 24,000  
homes/schools destroyed;  
180,000 families homeless 

May 11, 2003 Southwest Guizhou  
Province, China 

Yes Heavy rainfall and road  
construction; road-related  
landslides 

35 road workers killed and 2 
buildings and road destroyed

Apr. 20, 2003 Kara Taryk, Kyrgyzstan No Rain-on-snow; large  
landslides in Soviet-era  
uranium mining area 

38 deaths; 13 homes  
destroyed; potential pollution 
of a river 

Dec. 14-16, 1999 North coast of Venezuela  
near Carcas 

Yes Nearly, 1,000mm/3 days;  
Widespread shallow  
landslides and debris flows 
along a 40-km coastal strip 

About 30,000 deaths; 8,700  
residences infrastructure  
destroyed; extreme damage 

Oct. 30, 1998 Casita Volcano,  
Nicaragua 

Yes Hurricane Mitch,  
720mm/6day 

>2,000 death 

Aug. 26-31, 1998 Nishigo, Shirakawa, and  
Nasu, Japan 

Yes 5 days of heavy rainfall; 
>1,000 landslides 

9 deaths; many  
homes/buildings destoryed 

Aug. 17, 1998 Malpa, Northern India Yes 4 days of heavy rainfall; 
Large rockfall/debris  
avalanche 

207 deaths; 5.2 million rupees 
direct cost and 0.5 million  
rupees indirect cost 
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1) More information, such as geologic factors, could be incorporated into this global landslide 
susceptibility map when they become available globally; 
2) Finer resolution DEM data such as 6.1 x 6.1m LIDAR-based data can also improve the landslide 

susceptibility mapping, even if only available over small areas; 
3) Soil moisture conditions observed from NASA Aqua satellite with the Advanced Microwave Scanning 

Radiometer-EOS (AMSR-E) instrument or an antecedent precipitation index accumulated from TRMM 
will be examined for usefulness in this preliminary landslide detection/warning system; and 
4) The empirical rainfall intensity-duration threshold triggering landslides may be regionalized using 

mean climatic variables (e.g. mean annual rainfall). 
Given the fact that landslides usually occur after a period of heavy rainfall, a real-time landslide prediction 

system can be readily transformed into an early warning system by making use of the time lag between 
rainfall peak and slope failure. Therefore, success of this prototype system bears promise as an early 
warning system for global landslide disaster preparedness and hazard management. Additionally, it is 
possible that the warning lead-time of global landslide forecasts can be extended by using rainfall forecasts 
(1-10 days) from operational numerical weather forecast models. This real-time prediction system bears the 
promise to extend current local landslide hazard analyses into a global decision-making support system for 
landslide disaster preparedness and mitigation activities across the world. 
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